Multi-ciliated cells (MCCs) are terminally differentiated epithelia that are present in all metazoans and many unicellular eukaryotes1,2. In marine organisms they play a key role in locomotion and feeding3, while in mammals they clear mucus from the lungs, circulate cerebrospinal fluid in the nervous system and transport eggs and sperm in the reproductive tracts2.
Individual MCCs contain hundreds of motile cilia that rest on modified centrioles called basal bodies4. MCCs are polarized relative to each in a tissue, and individual cilia are polarized relative to each other within the MCC5. Individual cilia beat, which generates a unidirectional fluid flow along the planar axis of the tissue6. Abnormalities in cilia abundance, orientation and/or beating have severe implications for human health, causing chronic respiratory infections, hydrocephalus and male infertility7.
Recent advances in ‘omic’ methodologies and in live cell imaging techniques has renewed interest in understanding MCCs2. Most studies use the African clawed frog (Xenopus laevis) as a model system in cilia research4,5. Here, MCCs were obtained by in vitro differentiation of Xenopus-derived cell culture and were imaged using Nanolive’s 3D Cell Explorer. Images were acquired for 4 mins at an acquisition frequency of 1 image every 2 secs.
Sample courtesy of Camille Boutin, IBDM Marseille.
References
- Brooks, E. R. & Wallingford, J. B. Multiciliated Cells. Curr. Biol. 24, R973–R982 (2014).
- Spassky, N. & Meunier, A. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423–436 (2017).
- Marinković, M., Berger, J. & Jékely, G. Neuronal coordination of motile cilia in locomotion and feeding. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190165 (2020).
- Boutin, C. & Kodjabachian, L. Biology of multiciliated cells. Curr. Opin. Genet. Dev. 56, 1–7 (2019).
- Werner, M. E. & Mitchell, B. J. Understanding ciliated epithelia: The power of Xenopus. Genesis 50, 176–185 (2012).
- Satir, P., Heuser, T. & Sale, W. S. A structural basis for how motile cilia beat. Bioscience 64, 1073–1083 (2014).
- Bisgrove, B. W. & Yost, H. J. The roles of cilia in developmental disorders and disease. Development 133, 4131–4143 (2006).
Read our latest news
Nanolive releases the next-gen immune profiling solution, the LTCA
Nanolive has released it’s next generation immunotherapy solution: the LIVE T Cell Assay. This real-time digital assay combines label-free live cell imaging and AI-powered analysis to deliver continuous, multiparametric data - ranging from T cell activation to target...
Newsletter May: From live cells to insights: Explore AI-Powered Immune Profiling
Welcome to the May edition of the AI for Live Cell Insights Newsletter, bringing you the latest live cell analyses powering drug discovery and cosmetics development. Each month, we will explore a new application of AI-based cellular analysis for label-free live cell...
Newsletter April: AI-powered, label-free toxicology – Beyond animal testing
Welcome to the April edition of the AI for Live Cell Insights Newsletter, bringing you the latest live cell analyses powering drug discovery and cosmetics development. Each month, we will explore a new application of AI-based cellular analysis for label-free live-cell...
Nanolive microscopes

3D CELL EXPLORER
Budget-friendly, easy-to-use, compact solution for high quality non-invasive 4D live cell imaging

3D CELL EXPLORER-fluo
Multimodal Complete Solution: combine high quality non-invasive 4D live cell imaging with fluorescence

CX-A
Automated live cell imaging: a unique walk-away solution for long-term live cell imaging of single cells and cell populations