Last year, Nanolive awarded Joseph T Rodgers from the University of Southern California with the Label-free Lab Award. We invite you to read Joseph’s research outcomes with the 3D Cell Explorer.
“Our laboratory uses primary mouse and human skeletal muscle stem cells (MuSCs), also known as satellite cells, to study the mechanisms that regulate the injury-induced transition of stem cells from quiescent state into the cell cycle. This transition requires many days to complete. MuSCs are a model that allows us to study this transition ex vivo, immediately following FACS-mediated purification from muscle tissue. We have used the Nanolive 3D Explorer to visualize this process in never before seen detail.
The accompanying video is of primary MuSCs isolated from a juvenile mouse (5-week-old). The video begins two hours after FACS isolation, each frame is 5 minutes at a frame rate of 18 frames/sec.
MuSCs undergo profound changes in size, shape, and function during activation. In the first 24 hours after activation, there is a ~600% increase in cell volume and ~1,000% increase in metabolic activity prior to entering the cell cycle. MuSCs from juvenile mice require 35-40 hours to complete cytokinesis following activation. The kinetics of MuSC activation slow dramatically with age. MuSCs from an adult mouse require twice the amount of time to complete activation as MuSCs from juvenile mice. MuSCs from old mice require 3-4 times longer.
We use the Nanolive 3D Cell Explorer to perform high-resolution analysis of the morphologic and cell biologic features of MuSC activation. These data are producing new insights into the cellular processes involved in activation and mechanisms that underlie age-associated defects in MuSC activation.”
Joseph T. Rodgers
Assistant Professor
Department of Stem Cell Biology and Regenerative Medicine.
The Keck School of Medicine
University of Southern California
Los Angeles, CA